Thursday, May 9

Bahawalpur Board Math 2010-Part 2







1) The volume of parallelepiped is equal to:
a) ( u x v ) . w
b) ( u x v ) x w
c) u x ( v x w )
d) u x ( v x v )


2) Two non- zero vectors u and v are parallel if
a) u . v = 1
b) |u . v| = 1
c) u . v = 0
d) u . v ≠ 0


3) Which one is focus of parabola y2= 4ax
a) (a,0)
b) (-a,0)
c) (0,0)
d) (0,-a)


4) x2 + y2 + 2gx + 2fy = 0 represents :
a)circle
b) ellipse
c) hyperbola
d) parabola


5) eccentricity of ellipse x2 / a2 + y2 / b2 = 1 , a > b is
a) a / c >1
b) ac < 1
c) c / a < 1
d) a / c2 > 1


6) the variables used in system of linear equalities are also known as
a) constants
b) constraints
c) solutions
d) corners


7) second degree homogenous equation is equal to
a) ax2 + bx + c = 0
b) ax3 + bx2 + cx +d=0
c) ax+by+c=0
d) ax2 + 2hxy + by2 = 0


8) if line is parallel to x-axis then "α" is equal to
a) 0o
b) 90o
c) 120o
d) 150o


9) ∫ 1/√(1-x2) dx with limits 0 to 1 is equal to
a) π/6
b) π/4
c) π/3
d) π/2


10) d3y/dx3 + 2d2y/dx2 + d/dx + y = 0 is the differential equation of the

order
a) 2
b) 3
c) 4
d) 5


11) ∫ e^x [ cosx + sinx ]dx is equal to:
a) ex cosx + c
b) ex sinx + c
c) ex tanx + c
d) ex cotx + c


12) ∫ sec2x / tanx dx is :
a) ln tanx
b) ln cotx + c
c) cotx + c
d) tanx + c


13) ∫ x^n dx where n ≠-1 is equal to:
a) xn-1 / n-1 + c
b) xn+1 / n+1 + c
c) xn /n + c
d) xn+2 / n+2 + c


14) the function f(x) = ax2 + bx + c = 0 has the minimum value if
a) a > 0
b) a < 0
c) a > 1
d) a > 2


15) 1 – 1/2 +1/3 -1/4 + …… is the expansion of
a) ln2
b) ln3
c) ln4
d) ln5


16) d/dx cos-1x is equal to
a) 1 / √(1-x2)
b) -1 / √(1-x2)
c) 1 / √(x2-1)
d) -1 / √(x2-1)


17) d/dx ( x + 1/x) is equal to
a) 1 + 1/x
b) 1 – 1/x2
c) x – 1/x2
d) x + 1/x2


18) ∫ cosx dx with limits 0 to π is :
a) -2
b) -1
c) 0
d) 2


19) Area, surface area, volume etc deal with
a) integral calculus
b) differential calculus
c) complex numbers
d) infinite numbers


20) sinhx is equal to:
a) [ ex + e-x ] / 2
b) [ ex – e-x ] / 2
c) [ ex - e-x ] / [ex + e-x]
d) [ ex + e-x ] / [ex - e-x]

No comments:

Post a Comment